Sunday, August 28, 2011

Degrading proteins to divide cells

Friday, August 26, 2011

From bacteria to humans, all forms of life are based on the capacity of one cell to divide into two or more identical daughter cells. In doing so, cells have to produce a copy of their genetic material (DNA) and separate it into two identical sets, one for each daughter cell. Immediately after duplication and before its segregation, DNA is packed in chromosomes that consist of two identical strands joined at a point along their length, called centromeres. Centromeres ensure accurate separation of the chromosomes between daughter cells by directing the assembly of the molecular scaffolding that helps separate cells. The group of scientists led by the IBMB-CSIC Professor and IRB Barcelona researcher Ferran Azor?n has identified the main instrument that Drosophila cells use to control the levels of the CenH3 protein, a key element for defining the identity and function of the centromere in the fruit fly.

CenH3 is a unique variant of conventional histones ?proteins responsible for DNA packaging? found exclusively in the centromeres of all eukaryotes studied to date. "The presence of CenH3 in chromosome regions other than the centromere is sufficient to cause defects in chromosome separation in Drosophila and in budding yeast", explains Azor?n. In yeast and Drosophila, the controlled degradation of CenH3 is known to be one of the mechanisms that regulate its location in the centromere. How this mechanism works, however, has been a mystery until now. The study, led by Azor?n and published online on August 25 in Current Biology, shows that CenH3 interacts specifically with the protein partner of pair (Ppa), involved in directing proteins toward degradation. "We have demonstrated that degradation of CenH3 is essential for limiting its presence at the centromeres and that this degradation is mediated by the protein Ppa, which targets CenH3 to one of the cell's degradation mechanisms, the proteasome", explains Azor?n. The proteasome is a barrel-shape protein structure that breaks down and disposes of unfunctional or unnecessary proteins in the cell. When a protein has to be degraded it needs to be somehow 'tagged' for degradation so it can be detected efficiently and directed to the proteasome. Ppa is part of a 'degradation labelling complex' that marks proteins such as CenH3 with a molecule called ubiquitin for destruction in the proteasome.

"The split between insects and humans during evolution must have occurred about 5 hundred millions years ago. However, most of the molecular components of the centromere have remained practically unchanged in all eukaryotic organisms: CenH3, for example is found in all eukaryotic centromeres", says Azor?n. In Drosophila and also in humans impairment of chromosome segregation during cell division may contribute to disease and birth defects. Thus, errors in centromere function can lead to chromosome instability and aberrant cell division, both of which are often observed in cancer cells. Given the essential roles of the centromeric CenH3 during cell division and the similarities in centromeric structure and function observed among all eukaryotes, the insights into Drosophila centromere stability provided by Azor?n's group may contribute to our understanding of the genetic basis of cancer.

###

Institute for Research in Biomedicine (IRB Barcelona): http://www.irbbarcelona.org

Thanks to Institute for Research in Biomedicine (IRB Barcelona) for this article.

This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.

This press release has been viewed 51 time(s).

Source: http://www.labspaces.net/112844/Degrading_proteins_to_divide_cells

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.